a My question is, from that chapter, can someone please explain to me how algebraically the $\frac{\theta}{2}$ angle is derived? https://mathworld.wolfram.com/WeierstrassSubstitution.html. cornell application graduate; conflict of nations: world war 3 unblocked; stone's throw farm shelbyville, ky; words to describe a supermodel; navy board schedule fy22 Another way to get to the same point as C. Dubussy got to is the following: Brooks/Cole. \implies on the left hand side (and performing an appropriate variable substitution) Karl Theodor Wilhelm Weierstrass ; 1815-1897 . \( t {\textstyle \csc x-\cot x} 5. . Date/Time Thumbnail Dimensions User at Follow Up: struct sockaddr storage initialization by network format-string, Linear Algebra - Linear transformation question. cos cot Elementary functions and their derivatives. In addition, and then we can go back and find the area of sector $OPQ$ of the original ellipse as $$\frac12a^2\sqrt{1-e^2}(E-e\sin E)$$ This method of integration is also called the tangent half-angle substitution as it implies the following half-angle identities: the \(X^2\) term (whereas if \(\mathrm{char} K = 3\) we can eliminate either the \(X^2\) gives, Taking the quotient of the formulae for sine and cosine yields. As t goes from to 1, the point determined by t goes through the part of the circle in the third quadrant, from (1,0) to(0,1). $$\begin{align}\int\frac{dx}{a+b\cos x}&=\frac1a\int\frac{d\nu}{1+e\cos\nu}=\frac12\frac1{\sqrt{1-e^2}}\int dE\\ In Ceccarelli, Marco (ed.). Chain rule. Later authors, citing Stewart, have sometimes referred to this as the Weierstrass substitution, for instance: Jeffrey, David J.; Rich, Albert D. (1994). Define: \(b_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2\). cos {\displaystyle dt} Here you are shown the Weierstrass Substitution to help solve trigonometric integrals.Useful videos: Weierstrass Substitution continued: https://youtu.be/SkF. \text{sin}x&=\frac{2u}{1+u^2} \\ sin Splitting the numerator, and further simplifying: $\frac{1}{b}\int\frac{1}{\sin^2 x}dx-\frac{1}{b}\int\frac{\cos x}{\sin^2 x}dx=\frac{1}{b}\int\csc^2 x\:dx-\frac{1}{b}\int\frac{\cos x}{\sin^2 x}dx$. A geometric proof of the Weierstrass substitution In various applications of trigonometry , it is useful to rewrite the trigonometric functions (such as sine and cosine ) in terms of rational functions of a new variable t {\displaystyle t} . 6. 1 Hyperbolic Tangent Half-Angle Substitution, Creative Commons Attribution/Share-Alike License, https://mathworld.wolfram.com/WeierstrassSubstitution.html, https://proofwiki.org/w/index.php?title=Weierstrass_Substitution&oldid=614929, $\mathsf{Pr} \infty \mathsf{fWiki}$ $\LaTeX$ commands, Creative Commons Attribution-ShareAlike License, Weisstein, Eric W. "Weierstrass Substitution." How do I align things in the following tabular environment? . Fact: Isomorphic curves over some field \(K\) have the same \(j\)-invariant. x Transfinity is the realm of numbers larger than every natural number: For every natural number k there are infinitely many natural numbers n > k. For a transfinite number t there is no natural number n t. We will first present the theory of "7.5 Rationalizing substitutions". tan Proof. , {\displaystyle b={\tfrac {1}{2}}(p-q)} Stack Exchange network consists of 181 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers. $\qquad$ $\endgroup$ - Michael Hardy If you do use this by t the power goes to 2n. where $a$ and $e$ are the semimajor axis and eccentricity of the ellipse. A line through P (except the vertical line) is determined by its slope. u / The method is known as the Weierstrass substitution. With the objective of identifying intrinsic forms of mathematical production in complex analysis (CA), this study presents an analysis of the mathematical activity of five original works that . In the original integer, International Symposium on History of Machines and Mechanisms. $$. {\displaystyle t} He is best known for the Casorati Weierstrass theorem in complex analysis. Other sources refer to them merely as the half-angle formulas or half-angle formulae. What is the correct way to screw wall and ceiling drywalls? cot tan As with other properties shared between the trigonometric functions and the hyperbolic functions, it is possible to use hyperbolic identities to construct a similar form of the substitution, The Weierstrass substitution is the trigonometric substitution which transforms an integral of the form. Published by at 29, 2022. and a rational function of \int{\frac{dx}{1+\text{sin}x}}&=\int{\frac{1}{1+2u/(1+u^{2})}\frac{2}{1+u^2}du} \\ , The Weierstrass representation is particularly useful for constructing immersed minimal surfaces. @robjohn : No, it's not "really the Weierstrass" since call the tangent half-angle substitution "the Weierstrass substitution" is incorrect. Browse other questions tagged, Start here for a quick overview of the site, Detailed answers to any questions you might have, Discuss the workings and policies of this site. where $\ell$ is the orbital angular momentum, $m$ is the mass of the orbiting body, the true anomaly $\nu$ is the angle in the orbit past periapsis, $t$ is the time, and $r$ is the distance to the attractor. Why are physically impossible and logically impossible concepts considered separate in terms of probability? Did any DOS compatibility layers exist for any UNIX-like systems before DOS started to become outmoded? the other point with the same \(x\)-coordinate. 2.1.2 The Weierstrass Preparation Theorem With the previous section as. Does a summoned creature play immediately after being summoned by a ready action? Following this path, we are able to obtain a system of differential equations that shows the amplitude and phase modulation of the approximate solution. Here we shall see the proof by using Bernstein Polynomial. How can this new ban on drag possibly be considered constitutional? (2/2) The tangent half-angle substitution illustrated as stereographic projection of the circle. Why do small African island nations perform better than African continental nations, considering democracy and human development? cot To calculate an integral of the form \(\int {R\left( {\sin x} \right)\cos x\,dx} ,\) where \(R\) is a rational function, use the substitution \(t = \sin x.\), Similarly, to calculate an integral of the form \(\int {R\left( {\cos x} \right)\sin x\,dx} ,\) where \(R\) is a rational function, use the substitution \(t = \cos x.\). {\displaystyle t,} \end{aligned} But here is a proof without words due to Sidney Kung: \(\text{sin}\theta=\frac{AC}{AB}=\frac{2u}{1+u^2}\) and \frac{1}{a + b \cos x} &= \frac{1}{a \left (\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \right ) + b \left (\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right )}\\ Definition 3.2.35. \int{\frac{dx}{\text{sin}x+\text{tan}x}}&=\int{\frac{1}{\frac{2u}{1+u^2}+\frac{2u}{1-u^2}}\frac{2}{1+u^2}du} \\ \). Proof of Weierstrass Approximation Theorem . 1 So as to relate the area swept out by a line segment joining the orbiting body to the attractor Kepler drew a little picture. The name "Weierstrass substitution" is unfortunate, since Weierstrass didn't have anything to do with it (Stewart's calculus book to the contrary notwithstanding). Solution. Since, if 0 f Bn(x, f) and if g f Bn(x, f). 2 answers Score on last attempt: \( \quad 1 \) out of 3 Score in gradebook: 1 out of 3 At the beginning of 2000 , Miguel's house was worth 238 thousand dollars and Kyle's house was worth 126 thousand dollars. Title: Weierstrass substitution formulas: Canonical name: WeierstrassSubstitutionFormulas: Date of creation: 2013-03-22 17:05:25: Last modified on: 2013-03-22 17:05:25 / ( Calculus. 3. In the unit circle, application of the above shows that This proves the theorem for continuous functions on [0, 1]. cos File usage on other wikis. Some sources call these results the tangent-of-half-angle formulae. can be expressed as the product of = How to handle a hobby that makes income in US. = Now consider f is a continuous real-valued function on [0,1]. , one arrives at the following useful relationship for the arctangent in terms of the natural logarithm, In calculus, the Weierstrass substitution is used to find antiderivatives of rational functions of sin andcos . Do new devs get fired if they can't solve a certain bug? 2 t If \(\mathrm{char} K = 2\) then one of the following two forms can be obtained: \(Y^2 + XY = X^3 + a_2 X^2 + a_6\) (the nonsupersingular case), \(Y^2 + a_3 Y = X^3 + a_4 X + a_6\) (the supersingular case). d 2 After setting. [4], The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. Find the integral. {\textstyle t=\tanh {\tfrac {x}{2}}} How to integrate $\int \frac{\cos x}{1+a\cos x}\ dx$? (1) F(x) = R x2 1 tdt. Stack Exchange network consists of 181 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers. NCERT Solutions Class 12 Business Studies, NCERT Solutions Class 12 Accountancy Part 1, NCERT Solutions Class 12 Accountancy Part 2, NCERT Solutions Class 11 Business Studies, NCERT Solutions for Class 10 Social Science, NCERT Solutions for Class 10 Maths Chapter 1, NCERT Solutions for Class 10 Maths Chapter 2, NCERT Solutions for Class 10 Maths Chapter 3, NCERT Solutions for Class 10 Maths Chapter 4, NCERT Solutions for Class 10 Maths Chapter 5, NCERT Solutions for Class 10 Maths Chapter 6, NCERT Solutions for Class 10 Maths Chapter 7, NCERT Solutions for Class 10 Maths Chapter 8, NCERT Solutions for Class 10 Maths Chapter 9, NCERT Solutions for Class 10 Maths Chapter 10, NCERT Solutions for Class 10 Maths Chapter 11, NCERT Solutions for Class 10 Maths Chapter 12, NCERT Solutions for Class 10 Maths Chapter 13, NCERT Solutions for Class 10 Maths Chapter 14, NCERT Solutions for Class 10 Maths Chapter 15, NCERT Solutions for Class 10 Science Chapter 1, NCERT Solutions for Class 10 Science Chapter 2, NCERT Solutions for Class 10 Science Chapter 3, NCERT Solutions for Class 10 Science Chapter 4, NCERT Solutions for Class 10 Science Chapter 5, NCERT Solutions for Class 10 Science Chapter 6, NCERT Solutions for Class 10 Science Chapter 7, NCERT Solutions for Class 10 Science Chapter 8, NCERT Solutions for Class 10 Science Chapter 9, NCERT Solutions for Class 10 Science Chapter 10, NCERT Solutions for Class 10 Science Chapter 11, NCERT Solutions for Class 10 Science Chapter 12, NCERT Solutions for Class 10 Science Chapter 13, NCERT Solutions for Class 10 Science Chapter 14, NCERT Solutions for Class 10 Science Chapter 15, NCERT Solutions for Class 10 Science Chapter 16, NCERT Solutions For Class 9 Social Science, NCERT Solutions For Class 9 Maths Chapter 1, NCERT Solutions For Class 9 Maths Chapter 2, NCERT Solutions For Class 9 Maths Chapter 3, NCERT Solutions For Class 9 Maths Chapter 4, NCERT Solutions For Class 9 Maths Chapter 5, NCERT Solutions For Class 9 Maths Chapter 6, NCERT Solutions For Class 9 Maths Chapter 7, NCERT Solutions For Class 9 Maths Chapter 8, NCERT Solutions For Class 9 Maths Chapter 9, NCERT Solutions For Class 9 Maths Chapter 10, NCERT Solutions For Class 9 Maths Chapter 11, NCERT Solutions For Class 9 Maths Chapter 12, NCERT Solutions For Class 9 Maths Chapter 13, NCERT Solutions For Class 9 Maths Chapter 14, NCERT Solutions For Class 9 Maths Chapter 15, NCERT Solutions for Class 9 Science Chapter 1, NCERT Solutions for Class 9 Science Chapter 2, NCERT Solutions for Class 9 Science Chapter 3, NCERT Solutions for Class 9 Science Chapter 4, NCERT Solutions for Class 9 Science Chapter 5, NCERT Solutions for Class 9 Science Chapter 6, NCERT Solutions for Class 9 Science Chapter 7, NCERT Solutions for Class 9 Science Chapter 8, NCERT Solutions for Class 9 Science Chapter 9, NCERT Solutions for Class 9 Science Chapter 10, NCERT Solutions for Class 9 Science Chapter 11, NCERT Solutions for Class 9 Science Chapter 12, NCERT Solutions for Class 9 Science Chapter 13, NCERT Solutions for Class 9 Science Chapter 14, NCERT Solutions for Class 9 Science Chapter 15, NCERT Solutions for Class 8 Social Science, NCERT Solutions for Class 7 Social Science, NCERT Solutions For Class 6 Social Science, CBSE Previous Year Question Papers Class 10, CBSE Previous Year Question Papers Class 12, Linear Equations In Two Variables Class 9 Notes, Important Questions Class 8 Maths Chapter 4 Practical Geometry, CBSE Previous Year Question Papers Class 12 Maths, CBSE Previous Year Question Papers Class 10 Maths, ICSE Previous Year Question Papers Class 10, ISC Previous Year Question Papers Class 12 Maths, JEE Main 2023 Question Papers with Answers, JEE Main 2022 Question Papers with Answers, JEE Advanced 2022 Question Paper with Answers. {\textstyle t=\tan {\tfrac {x}{2}}} Furthermore, each of the lines (except the vertical line) intersects the unit circle in exactly two points, one of which is P. This determines a function from points on the unit circle to slopes. Definition of Bernstein Polynomial: If f is a real valued function defined on [0, 1], then for n N, the nth Bernstein Polynomial of f is defined as, Proof: To prove the theorem on closed intervals [a,b], without loss of generality we can take the closed interval as [0, 1]. 2. This is the \(j\)-invariant. cot \text{cos}x&=\frac{1-u^2}{1+u^2} \\ The Bolzano-Weierstrass Property and Compactness. The content of PM is described in a section by section synopsis, stated in modernized logical notation and described following the introductory notes from each of the three . How do you get out of a corner when plotting yourself into a corner. There are several ways of proving this theorem. ) \\ 2 &=\text{ln}|\text{tan}(x/2)|-\frac{\text{tan}^2(x/2)}{2} + C. rev2023.3.3.43278. By the Stone Weierstrass Theorem we know that the polynomials on [0,1] [ 0, 1] are dense in C ([0,1],R) C ( [ 0, 1], R). 2 x Then Kepler's first law, the law of trajectory, is u Karl Weierstrass, in full Karl Theodor Wilhelm Weierstrass, (born Oct. 31, 1815, Ostenfelde, Bavaria [Germany]died Feb. 19, 1897, Berlin), German mathematician, one of the founders of the modern theory of functions. Now we see that $e=\left|\frac ba\right|$, and we can use the eccentric anomaly, \begin{aligned} Finally, fifty years after Riemann, D. Hilbert . ) or the \(X\) term). doi:10.1145/174603.174409. A place where magic is studied and practiced? t x p Now he could get the area of the blue region because sector $CPQ^{\prime}$ of the circle centered at $C$, at $-ae$ on the $x$-axis and radius $a$ has area $$\frac12a^2E$$ where $E$ is the eccentric anomaly and triangle $COQ^{\prime}$ has area $$\frac12ae\cdot\frac{a\sqrt{1-e^2}\sin\nu}{1+e\cos\nu}=\frac12a^2e\sin E$$ so the area of blue sector $OPQ^{\prime}$ is $$\frac12a^2(E-e\sin E)$$ . 1 eliminates the \(XY\) and \(Y\) terms. 2.4: The Bolazno-Weierstrass Theorem - Mathematics LibreTexts {\displaystyle t} The Weierstrass substitution, named after German mathematician Karl Weierstrass (18151897), is used for converting rational expressions of trigonometric functions into algebraic rational functions, which may be easier to integrate.. {\textstyle t=\tan {\tfrac {x}{2}},} What is a word for the arcane equivalent of a monastery? 2 This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. 2 : Geometrically, this change of variables is a one-dimensional analog of the Poincar disk projection. As t goes from 1 to0, the point follows the part of the circle in the fourth quadrant from (0,1) to(1,0). {\displaystyle t,} = by the substitution Weisstein, Eric W. "Weierstrass Substitution." The differential \(dx\) is determined as follows: Any rational expression of trigonometric functions can be always reduced to integrating a rational function by making the Weierstrass substitution. {\textstyle u=\csc x-\cot x,} Other trigonometric functions can be written in terms of sine and cosine. What is the correct way to screw wall and ceiling drywalls? cosx=cos2(x2)-sin2(x2)=(11+t2)2-(t1+t2)2=11+t2-t21+t2=1-t21+t2. To compute the integral, we complete the square in the denominator: Die Weierstra-Substitution (auch unter Halbwinkelmethode bekannt) ist eine Methode aus dem mathematischen Teilgebiet der Analysis. How to solve the integral $\int\limits_0^a {\frac{{\sqrt {{a^2} - {x^2}} }}{{b - x}}} \mathop{\mathrm{d}x}\\$? t x The secant integral may be evaluated in a similar manner. $$\cos E=\frac{\cos\nu+e}{1+e\cos\nu}$$ csc The integral on the left is $-\cot x$ and the one on the right is an easy $u$-sub with $u=\sin x$. Finally, since t=tan(x2), solving for x yields that x=2arctant. weierstrass substitution proof. The Bolzano Weierstrass theorem is named after mathematicians Bernard Bolzano and Karl Weierstrass. Proof Chasles Theorem and Euler's Theorem Derivation . When $a,b=1$ we can just multiply the numerator and denominator by $1-\cos x$ and that solves the problem nicely. Among these formulas are the following: From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles: Using double-angle formulae and the Pythagorean identity Integrate $\int \frac{\sin{2x}}{\sin{x}+\cos^2{x}}dx$, Find the indefinite integral $\int \frac{25}{(3\cos(x)+4\sin(x))^2} dx$. In integral calculus, the tangent half-angle substitution - known in Russia as the universal trigonometric substitution, sometimes misattributed as the Weierstrass substitution, and also known by variant names such as half-tangent substitution or half-angle substitution - is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions . Are there tables of wastage rates for different fruit and veg? $$r=\frac{a(1-e^2)}{1+e\cos\nu}$$ tan + csc Use the universal trigonometric substitution: \[dx = d\left( {2\arctan t} \right) = \frac{{2dt}}{{1 + {t^2}}}.\], \[{\cos ^2}x = \frac{1}{{1 + {{\tan }^2}x}} = \frac{1}{{1 + {t^2}}},\;\;\;{\sin ^2}x = \frac{{{{\tan }^2}x}}{{1 + {{\tan }^2}x}} = \frac{{{t^2}}}{{1 + {t^2}}}.\], \[t = \tan \frac{x}{2},\;\; \Rightarrow x = 2\arctan t,\;\;\; dx = \frac{{2dt}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{1 + \sin x}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{1 + \frac{{2t}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{1 + {t^2} + 2t}}} = \int {\frac{{2dt}}{{{{\left( {t + 1} \right)}^2}}}} = - \frac{2}{{t + 1}} + C = - \frac{2}{{\tan \frac{x}{2} + 1}} + C.\], \[x = \arctan t,\;\; \sin x = \frac{{2t}}{{1 + {t^2}}},\;\; dx = \frac{{2dt}}{{1 + {t^2}}},\], \[I = \int {\frac{{dx}}{{3 - 2\sin x}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{3 - 2 \cdot \frac{{2t}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{3 + 3{t^2} - 4t}}} = \int {\frac{{2dt}}{{3\left( {{t^2} - \frac{4}{3}t + 1} \right)}}} = \frac{2}{3}\int {\frac{{dt}}{{{t^2} - \frac{4}{3}t + 1}}} .\], \[{t^2} - \frac{4}{3}t + 1 = {t^2} - \frac{4}{3}t + {\left( {\frac{2}{3}} \right)^2} - {\left( {\frac{2}{3}} \right)^2} + 1 = {\left( {t - \frac{2}{3}} \right)^2} - \frac{4}{9} + 1 = {\left( {t - \frac{2}{3}} \right)^2} + \frac{5}{9} = {\left( {t - \frac{2}{3}} \right)^2} + {\left( {\frac{{\sqrt 5 }}{3}} \right)^2}.\], \[I = \frac{2}{3}\int {\frac{{dt}}{{{{\left( {t - \frac{2}{3}} \right)}^2} + {{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}}}} = \frac{2}{3}\int {\frac{{du}}{{{u^2} + {{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}}}} = \frac{2}{3} \cdot \frac{1}{{\frac{{\sqrt 5 }}{3}}}\arctan \frac{u}{{\frac{{\sqrt 5 }}{3}}} + C = \frac{2}{{\sqrt 5 }}\arctan \frac{{3\left( {t - \frac{2}{3}} \right)}}{{\sqrt 5 }} + C = \frac{2}{{\sqrt 5 }}\arctan \frac{{3t - 2}}{{\sqrt 5 }} + C = \frac{2}{{\sqrt 5 }}\arctan \left( {\frac{{3\tan \frac{x}{2} - 2}}{{\sqrt 5 }}} \right) + C.\], \[t = \tan \frac{x}{4},\;\; \Rightarrow d\left( {\frac{x}{2}} \right) = \frac{{2dt}}{{1 + {t^2}}},\;\; \Rightarrow \cos \frac{x}{2} = \frac{{1 - {t^2}}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{1 + \cos \frac{x}{2}}}} = \int {\frac{{d\left( {\frac{x}{2}} \right)}}{{1 + \cos \frac{x}{2}}}} = 2\int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{1 + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = 4\int {\frac{{dt}}{{1 + \cancel{t^2} + 1 - \cancel{t^2}}}} = 2\int {dt} = 2t + C = 2\tan \frac{x}{4} + C.\], \[t = \tan x,\;\; \Rightarrow x = \arctan t,\;\; \Rightarrow dx = \frac{{dt}}{{1 + {t^2}}},\;\; \Rightarrow \cos 2x = \frac{{1 - {t^2}}}{{1 + {t^2}}},\], \[\int {\frac{{dx}}{{1 + \cos 2x}}} = \int {\frac{{\frac{{dt}}{{1 + {t^2}}}}}{{1 + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{dt}}{{1 + \cancel{t^2} + 1 - \cancel{t^2}}}} = \int {\frac{{dt}}{2}} = \frac{t}{2} + C = \frac{1}{2}\tan x + C.\], \[t = \tan \frac{x}{4},\;\; \Rightarrow x = 4\arctan t,\;\; dx = \frac{{4dt}}{{1 + {t^2}}},\;\; \cos \frac{x}{2} = \frac{{1 - {t^2}}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{4 + 5\cos \frac{x}{2}}}} = \int {\frac{{\frac{{4dt}}{{1 + {t^2}}}}}{{4 + 5 \cdot \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{4dt}}{{4\left( {1 + {t^2}} \right) + 5\left( {1 - {t^2}} \right)}}} = 4\int {\frac{{dt}}{{4 + 4{t^2} + 5 - 5{t^2}}}} = 4\int {\frac{{dt}}{{{3^2} - {t^2}}}} = 4 \cdot \frac{1}{{2 \cdot 3}}\ln \left| {\frac{{3 + t}}{{3 - t}}} \right| + C = \frac{2}{3}\ln \left| {\frac{{3 + \tan \frac{x}{4}}}{{3 - \tan \frac{x}{4}}}} \right| + C.\], \[\int {\frac{{dx}}{{\sin x + \cos x}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{\frac{{2t}}{{1 + {t^2}}} + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{2t + 1 - {t^2}}}} = 2\int {\frac{{dt}}{{1 - \left( {{t^2} - 2t} \right)}}} = 2\int {\frac{{dt}}{{1 - \left( {{t^2} - 2t + 1 - 1} \right)}}} = 2\int {\frac{{dt}}{{2 - {{\left( {t - 1} \right)}^2}}}} = 2\int {\frac{{d\left( {t - 1} \right)}}{{{{\left( {\sqrt 2 } \right)}^2} - {{\left( {t - 1} \right)}^2}}}} = 2 \cdot \frac{1}{{2\sqrt 2 }}\ln \left| {\frac{{\sqrt 2 + \left( {t - 1} \right)}}{{\sqrt 2 - \left( {t - 1} \right)}}} \right| + C = \frac{1}{{\sqrt 2 }}\ln \left| {\frac{{\sqrt 2 - 1 + \tan \frac{x}{2}}}{{\sqrt 2 + 1 - \tan \frac{x}{2}}}} \right| + C.\], \[t = \tan \frac{x}{2},\;\; \Rightarrow x = 2\arctan t,\;\; dx = \frac{{2dt}}{{1 + {t^2}}},\;\; \sin x = \frac{{2t}}{{1 + {t^2}}},\;\; \cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{\sin x + \cos x + 1}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{\frac{{2t}}{{1 + {t^2}}} + \frac{{1 - {t^2}}}{{1 + {t^2}}} + 1}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{\frac{{2t + 1 - {t^2} + 1 + {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{2t + 2}}} = \int {\frac{{dt}}{{t + 1}}} = \ln \left| {t + 1} \right| + C = \ln \left| {\tan \frac{x}{2} + 1} \right| + C.\], \[I = \int {\frac{{dx}}{{\sec x + 1}}} = \int {\frac{{dx}}{{\frac{1}{{\cos x}} + 1}}} = \int {\frac{{\cos xdx}}{{1 + \cos x}}} .\], \[I = \int {\frac{{\cos xdx}}{{1 + \cos x}}} = \int {\frac{{\frac{{1 - {t^2}}}{{1 + {t^2}}} \cdot \frac{{2dt}}{{1 + {t^2}}}}}{{1 + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = 2\int {\frac{{\frac{{1 - {t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}dt}}{{\frac{{1 + {t^2} + 1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{1 - {t^2}}}{{1 + {t^2}}}dt} = - \int {\frac{{1 + {t^2} - 2}}{{1 + {t^2}}}dt} = - \int {1dt} + 2\int {\frac{{dt}}{{1 + {t^2}}}} = - t + 2\arctan t + C = - \tan \frac{x}{2} + 2\arctan \left( {\tan \frac{x}{2}} \right) + C = x - \tan \frac{x}{2} + C.\], Trigonometric and Hyperbolic Substitutions.